Role for MyD88-independent, TRIF pathway in lipid A/TLR4-induced endotoxin tolerance.
نویسندگان
چکیده
Repeated exposure to low doses of endotoxin results in progressive hyporesponsiveness to subsequent endotoxin challenge, a phenomenon known as endotoxin tolerance. In spite of its clinical significance in sepsis and characterization of the TLR4 signaling pathway as the principal endotoxin detection mechanism, the molecular determinants that induce tolerance remain obscure. We investigated the role of the TRIF/IFN-beta pathway in TLR4-induced endotoxin tolerance. Lipid A-induced homotolerance was characterized by the down-regulation of MyD88-dependent proinflammatory cytokines TNF-alpha and CCL3, but up-regulation of TRIF-dependent cytokine IFN-beta. This correlated with a molecular phenotype of defective NF-kappaB activation but a functional TRIF-dependent STAT1 signaling. Tolerance-induced suppression of TNF-alpha and CCL3 expression was significantly relieved by TRIF and IFN regulatory factor 3 deficiency, suggesting the involvement of the TRIF pathway in tolerance. Alternatively, selective activation of TRIF by poly(I:C)-induced tolerance to lipid A. Furthermore, pretreatment with rIFN-beta also induced tolerance, whereas addition of IFN-beta-neutralizing Ab during the tolerization partially alleviated tolerance to lipid A but not TLR2-induced endotoxin homo- or heterotolerance. Furthermore, IFNAR1-/- murine embryonal fibroblast and bone-marrow derived macrophages failed to induce tolerance. Together, these observations constitute evidence for a role of the TRIF/IFN-beta pathway in the regulation of lipid A/TLR4-mediated endotoxin homotolerance.
منابع مشابه
CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance.
Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain-containing adapter-inducing IFN-β (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868-880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes a...
متن کاملDominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus.
TLR4 ligation by pathogen-associated molecular patterns, such as Gram-negative bacteria-derived LPS, triggers a nonhematopoietic cell-mediated ileus during early endotoxemia. Our objective was to investigate the quantitative contributions of the two downstream signaling pathways of TLR4, namely the adapter proteins myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1-resistanc...
متن کاملDifferential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins.
The biological response to endotoxin mediated through the Toll-like receptor 4 (TLR4)-MD-2 receptor complex is directly related to lipid A structure or configuration. Endotoxin structure may also influence activation of the MyD88-dependent and -independent signaling pathways of TLR4. To address this possibility, human macrophage-like cell lines (THP-1, U937, and MM6) or murine macrophage RAW 26...
متن کاملPriming effect of lipopolysaccharide on acetyl-coenzyme A:lyso-platelet-activating factor acetyltransferase is MyD88 and TRIF independent.
LPS has a priming effect on various stimuli. For instance, LPS priming enhances the production of platelet-activating factor (PAF), a proinflammatory lipid mediator that is induced by PAF itself. Among various enzymes responsible for PAF biosynthesis, acetyl-coenzyme A:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase is one of the enzymes activated by PAF receptor stimulation. In ...
متن کاملCaveolin-1 Tyr Phosphorylation Induces Interaction with TLR4 in Endothelial Cells and Mediates MyD88-Dependent Signaling and Sepsis-Induced Lung Inflammation
Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 179 6 شماره
صفحات -
تاریخ انتشار 2007